Analysis of Collision Safety Associated With Conventional and Crash Energy Management Cars Mixed Within a Consist

Author:

Severson Kristine J.1,Tyrell David C.1,Perlman A. Benjamin2

Affiliation:

1. U.S. Department of Transportation, Cambridge, MA

2. Tufts University, Medford, MA

Abstract

A collision dynamics model of a passenger train-to-passenger train collision has been developed to simulate the potential safety hazards and benefits associated with mixing conventional and crash energy management (CEM) cars within a consist. This paper presents a comparison of estimated injuries and fatalities for seven collision scenarios based upon the variable mix of conventional and CEM cars. Based on the analysis results, recommended car placement when mixing cars within a consist is identified. The model includes a 6 car cab car-led consist colliding with a 6 car locomotive-led stationary consist. The stationary consist is made up of all conventional cars. The moving consist has a variable mix of conventional and CEM cars. For comparison, the bounding scenarios are: - a moving consist with all conventional cars, and - a moving consist with all CEM cars. The collision speed ranges from 15 to 35 mph. Since the two car designs behave differently under impact conditions, there is a concern that there may be hazards associated with mixing the two designs in the same consist. In none of the cases evaluated is the mixed consist less crashworthy than the conventional consist. The modeling results indicate that the least crashworthy consists are ones in which a conventional cab car is leading any combination of vehicles. The conventional cab car incurs nearly all the damage and prevents trailing cars from participating in energy absorption, whether they are conventional or CEM. The most crashworthy consists are ones in which a CEM cab is leading. The CEM cab can absorb a significant amount of energy without intruding into the occupied volume. The CEM cab also allows trailing cars to participate in energy absorption, which provides further occupant protection. The recommended strategy for car placement is to put the CEM car(s) at the leading end(s) and the conventional car(s) at the trailing end or in the middle of the consist in push-pull operation. There is also significant benefit to placing the seats in the leading CEM car or two so they are rear-facing. Rear-facing seats can reduce the severity of secondary impact injuries because the occupant is already in contact with the seat in the direction of travel and does not develop a significant velocity relative to the seat.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rail vehicle crashworthiness based on collision energy management: an overview;International Journal of Rail Transportation;2020-06-16

2. Crush Analyses of Multi-Level Equipment;Rail Transportation;2006-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3