Assesment of Modeling and Discretization Error in Finite-Volume Large Eddy Simulations

Author:

Adedoyin Adetokunbo A.1,Walters D. Keith1,Bhushan Shanti1

Affiliation:

1. Mississippi State University

Abstract

Large eddy simulations of turbulent flows are known to suffer from two separate error sources: the subgrid stress model and the numerical discretization scheme. In general, the two sources of error cannot be separately quantified for finite-difference/finite-volume CFD simulations. The motivation of this paper lies in the desire to determine optimum combinations of currently available subgrid stress models and numerical schemes for use in large eddy simulations of complex flows. Error assessments for large eddy simulation of turbulent fluid flow are presented. These assessments were carried out using pseudospectral simulation techniques in order to isolate finite-differencing and modeling errors by explicitly adding numerical derivative error terms to the simulations and analyzing their effect. Results from several combinations of subgrid stress model and spatial discretization scheme are presented. Simulations were performed for decaying isotropic turbulence on both 323 and 643 grids. Results were compared in terms of spectral energy distributions at succeeding time intervals. For verification, the pseudo-spectral results were compared to LES solutions obtained from a commercially available finite-volume flow solver (FLUENT), and comparisons were made in terms of energy decay rates, numerical versus subgrid stress dissipation levels, and computed energy spectra. The results highlight the interaction between subgrid stress model and discretization scheme. The results also indicate that certain combinations of model and numerical scheme may be more appropriate for finite-volume LES than others.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3