Fuel Cell Gas Turbine Hybrid Simulation Facility Design

Author:

Tucker David1,Liese Eric1,VanOsdol John1,Lawson Larry1,Gemmen Randall S.1

Affiliation:

1. National Energy Technology Laboratory, United States Department of Energy, Morgantown, WV

Abstract

Fuel cell hybrid power systems have potential for the highest electrical power generation efficiency. Fuel cell gas turbine hybrid systems are currently under development as the first step in commercializing this technology. The dynamic interdependencies resulting from the integration of these two power generation technologies is not well understood. Unexpected complications can arise in the operation of an integrated system, especially during startup and transient events. Fuel cell gas turbine systems designed to operate under steady state conditions have limitations in studying the dynamics of a transient event without risk to the more fragile components of the system. A 250kW experimental fuel cell gas turbine system test facility has been designed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to examine the effects of transient events on the dynamics of these systems. The test facility will be used to evaluate control strategies for improving system response to transient events and load following. A fuel cell simulator, consisting of a natural gas burner controlled by a real time fuel cell model, will be integrated into the system in place of a real solid oxide fuel cell. The use of a fuel cell simulator in the initial phases allows for the exploration of transient events without risk of destroying an actual fuel cell. Fuel cell models and hybrid system models developed at NETL have played an important role in guiding the design of facility equipment and experimental research planning. Results of certain case studies using these models are discussed. Test scenarios were analyzed for potential thermal and mechanical impact on fuel cell, heat exchanger and gas turbine components. Temperature and pressure drop calculations were performed to determine the maximum impact on system components and design. Required turbine modifications were designed and tested for functionality. The resulting facility design will allow for examination of startup, shut down, loss of load to the fuel cell during steady state operations, loss of load to the turbine during steady state operations and load following.

Publisher

ASMEDC

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3