A Procedure to Evaluate the Thermal Response of a Multilayered Thermal Protection System Subjected to Aerodynamic Heating

Author:

Ferraiuolo Michele1,Manca Oronzio2,Riccio Aniello1

Affiliation:

1. CIRA scpa, Capua, Italy

2. Seconda Universita` di Napoli, Aversa, Italy

Abstract

Next generation reusable re-entry vehicles must be capable of sustaining consistent repeated aero-thermal loads without damage or deterioration. This means that such structures must tolerate the high temperatures engendered by aero-thermal re-entry fluxes due to the establishment of a hypersonic regime over the body. Thermal Protection Systems (TPS) are used to maintain a reusable launch vehicle’s structural temperature within acceptable limits during re-entry flights; that is, internal temperature should not overcome the temperature limit use of the internal structure. TPS are usually composed by several layers made of different materials. Heat transfer through a multilayer insulation during atmospheric re-entry involves combined modes of heat transfer: heat conduction through the solid, heat radiation to the outer space etc. In the frame of TPS design activities a procedure based on one dimensional analytical solutions of transient nonlinear analyses has been developed in order to estimate the temperature variation with time and space of a multilayered body subjected to aerodynamic heating inside a radiating space. Since internal temperature values of TPSs of re-entry vehicles cannot exceed certain values, that procedure allows to quickly evaluate those temperature values and to preliminary size layer thicknesses before preparing and performing Finite Element analyses.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal and Thermomechanical Performances of Pyramidal Core Sandwich Panels Under Aerodynamic Heating;Journal of Thermal Science and Engineering Applications;2016-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3