Affiliation:
1. Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, Canada
Abstract
Abstract
This paper summarizes the effects of various types or numbers of critical-heat-flux (CHF)-enhancing inserts in tubular geometries. The impact of inserts on CHF is frequently expressed by an enhancement ratio K: the ratio of CHF with an insert to the CHF in a bare tube for the same local flow conditions. The impact on K of the following parameters was investigated: (i) fluid type (Freon-134a, water), (ii) axial spacing between inserts, (iii) shape of the insert, (iv) flow blockage of the insert, (v) number of similar/dissimilar insert planes upstream, and (vi) impact of flow conditions. The spacing and flow-obstruction area were found to be the major geometric factors that affected K: by decreasing the relative spacing, L/D, to 16, K can reach a value of from 2 to 3, depending on the flow-obstruction area. Among flow parameters, the critical quality, xc, usually has a strong effect on K: K can increase from a value of 1 to 3, when xc increases from 0 to 0.4 for a mass flux G ≥ 2 Mg/m2s. For G < 2 Mg/m2s, CHF enhancement can disappear or become negative (K < 1). No cumulative effect was found on K for a series of upstream insert planes. CHF enhancement does not depend on fluid type, provided that the conditions in the fluids meet the CHF fluid-to-fluid modelling requirements.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献