Forced Convective Heat Transfer of Nanofluids in Microchannels

Author:

Jung Jung-Yeul1,Oh Hoo-Suk2,Kwak Ho-Young1

Affiliation:

1. Chung-Ang University

2. Chung -Ang University

Abstract

Convective heat transfer coefficient and friction factor of a nanofluid in rectangular microchannel were measured. An integrated microsystem consisting of a single microchannel on one side and two localized heaters and five polysilicon temperature sensors along the channel on the other side were fabricated. Aluminum dioxide (Al2O3) nanofluids with various particle volume fractions were used in experiment to investigate the effect of the volume fraction of the nanoparticles to the convective heat transfer and fluid flow in microchannels. The convective heat transfer coefficient of the Al2O3 nanofluid in laminar flow regime was measured to be increased up to 15% compared to the distilled water at a volume fraction of 1.8 volume percent without major friction loss. The Nusselt number measured increases with increasing the Reynolds number in laminar flow regime. A new type of convective heat transfer correlation was proposed to correlate experimental data of heat transfer coefficient for nanofluids in microchannels.

Publisher

ASMEDC

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3