Simulating the Response of Composite Reinforced Floor Slabs Subjected to Blast Loading

Author:

Lawver Darell1,Daddazio Raymond2,Oh Gwang Jin2,Lee C. K. B.1,Pifko Allan B.2,Stanley Michael3

Affiliation:

1. Weidlinger Associates, Inc., Los Altos, CA

2. Weidlinger Associates, Inc., New York, NY

3. New Mexico Institute of Mining and Technology, Socorro, NM

Abstract

The threat of terrorist attack against civil infrastructure in the US and other countries has led to the need to better understand the response of structures and structural components to an impulsive air blast overpressure. One scenario that is present in many cities is delivery trucks entering basement or street level loading/unloading areas. A bomb present in one of these delivery trucks could cause considerable damage to the floor slab (and consequently the building) above the blast by causing a vertical uplift, a condition that the slab was not designed to resist. Traditional methods to retrofit floor slabs to resist an upwards blast pressure require that additional tension sustaining reinforcing bars (rebars) be placed near the slab upper surface. This reinforcing method is costly, difficult to produce, and adds additional weight to the overall structure in building retrofit situations. Another approach to reinforcing the slab is to bond light-weight, high strength fiber composite material to the slab upper surface as a means of resisting the tensile forces from the slab upward motion. This paper presents results from an effort to simulate the response of a reinforced concrete floor slab with a fiber composite retrofit subjected to a blast overpressure. The simulations were performed using the Weidlinger Associates’ FLEX [1] finite element code for structural response calculations. The MAZ [2] computational fluid dynamics code was used to generate blast pressure. This paper will discuss the modeling effort used to predict the response of fiber composite retrofitted slabs and compare the computational analysis to test results1.

Publisher

ASMEDC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3