Heat Flux Determination From Ultrasonic Pulse Measurements

Author:

Myers M. R.1,Walker D. G.1,Yuhas D. E.2,Mutton M. J.2

Affiliation:

1. Vanderbilt University, Nashville, TN

2. Industrial Measurement Systems, Inc., Aurora, IL

Abstract

Ultrasonic time of flight measurements have been used to estimate the interior temperature of propulsion systems remotely. All that is needed is acoustic access to the boundary in question and a suitable model for the heat transfer along the path of the pulse train. The interior temperature is then deduced from a change in the time of flight and the temperature dependent velocity factor, which is obtained for various materials as a calibration step. Because the acoustic pulse samples the entire temperature distribution, inverse data reduction routines have been shown to provide stable and accurate estimates of the unknown temperature boundary. However, this technique is even more interesting when applied to unknown heat flux boundaries. Normally, the estimation of heat fluxes is even more susceptible to uncertainty in the measurement compared to temperature estimates. However, ultrasonic sensors can be treated as extremely high-speed calorimeters where the heat flux is directly proportional to the measured signal. Through some simple one-dimensional analyses, this work will show that heat flux is a more natural and stable quantity to estimate from ultrasonic time of flight. We have also introduced an approach for data reduction that makes use of a composite velocity factor, which is easier to measure.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3