Convective Heat Transfer From Heated Extended Surfaces With a Confined Slot Jet Impingement

Author:

Liu L. K.1,Wu M. C.1,Fang C. J.1,Hung Y. H.1

Affiliation:

1. National Tsing Hua University

Abstract

A series of experimental investigations with stringent measurement methods on the studies related to mixed convection from the horizontally confined extended surfaces with a slot jet impingement have been successfully conducted. The relevant parameters influencing mixed convection performance due to jet impingement and buoyancy include the Grashof number, ratio of jet separation distance to nozzle width, ratio of extended surfaces height to nozzle width and jet Reynolds number. The range of these parameters studied are Grs = 3.77 × 105 – 1.84 × 106, H/W = 1–10, Hs/W = 0.74–3.40 and Re = 63–1383. In the study, the heat transfer behavior on the extended surfaces with confined slot jet impingement such as the temperature distribution, local and average Nusselt numbers on the extended surfaces has been systematically explored. The results manifest that the effect of steady-state Grashof number on heat transfer behavior such as stagnation, local and average Nusselt number is not significant; while the heat transfer performance increases with decreasing jet separation distance or with increasing extended surface height and jet Reynolds number. Besides, two new correlations of local and average Nusselt numbers in terms of H/W, Hs/W and Re are proposed for the cases of extended surfaces. A satisfactory agreement is achieved between the results predicted by these correlations and the experimental data. Finally, a complete composite correlation of steady-state average Nusselt number for mixed convection due to jet impingement and buoyancy is proposed. The comparison of the predictions evaluated by this correlation with all the present experimental data is made. The maximum and average deviations of the predictions from the experimental data are 7.46% and 2.87%, respectively.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3