A Numerical Study of the Effect of Contact Angle on the Dynamics of a Single Bubble During Pool Boiling

Author:

Abarajith H. S.1,Dhir V. K.1

Affiliation:

1. University of California at Los Angeles, Los Angeles, CA

Abstract

The effect of contact angle on the growth and departure of a single bubble on a horizontal heated surface during pool boiling under normal gravity conditions has been investigated using numerical simulations. The contact angle is varied by changing the Hamaker constant that defines the long-range forces. A finite difference scheme is used to solve the equations governing mass, momentum and energy in the vapor and liquid phases. The vapor-liquid interface is captured by the Level Set method, which is modified to include the influence of phase change at the liquid-vapor interface. The contact angle is varied from 1° to 90° and its effect on the bubble departure diameter and the bubble growth period are studied. Both water and PF5060 are used as test liquids. The contact angle is kept constant throughout the bubble growth and departure process. The effect of contact angle on the parameters like thermal boundary layer thickness, wall heat flux and heat flux from the microlayer under various conditions of superheats and subcoolings is also studied.

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3