Analysis on Rapid Cooling and Epitaxial Solidification of a Plasma-Sprayed Yttria Stabilized Zirconia Splat on a High-Temperature Substrate

Author:

Xing Ya-Zhe1,Li Chang-Jiu1,Qiao Jiang-Hao1,Wang Guo-Xiang2

Affiliation:

1. Xi’an Jiaotong University, Xi’an, Shaanxi, China

2. University of Akron, Akron, OH

Abstract

In many applications, it will be beneficial if the plasma-sprayed Yttria stabilized zirconia (YSZ) coatings exhibit epitaxial growth. Early experiments in plasma spray have shown that a high initial substrate temperature may help develop epitaxial growth from the previous deposited splats. This paper has performed an experiment to demonstrate the possibility of epitaxial growth in plasma-sprayed YSZ coatings at high substrate temperatures. A quantitative analysis of splat cooling and rapid solidification of the YSZ splat is then presented. The analysis is based on a one-dimension heat transfer model of a thin liquid YSZ layer in contact with an YSZ substrate at fairly high initial temperature. The model calculations indicate that equilibrium solidification may take place on the YSZ substrate but with a solidification temperature that is much higher than the YSZ substrate temperature. Such equilibrium solidification requires nucleation of new crystalline YSZ and therefore only leads to non-epitaxial growth. Epitaxial growth, on the other hand, requires a large melt undercooling so the YSZ crystalline can grow directly from the substrate surface, which is at a much lower temperature than the equilibrium melting point. The effect of the substrate initial temperature on the development of melt undercooling within the splat is investigated in detail. Some interesting observations have been made which may explain the physics of epitaxial growth in YSZ coatings.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3