Optimization of Machine Tool Structures Based on Static and Dynamic Criteria

Author:

Kushnir Emmanuil1,Newton Robert1,Tuccio Mark1

Affiliation:

1. Hardinge, Inc., Elmira, NY

Abstract

The process of designing any new machine tool consists of several stages during its prototype development. Once the cutting envelope and power requirements have been defined, the major structural components are usually designed simultaneously by several different designers, as a result of project time constraints. Because designers may sometimes have a difficult time knowing what impact their changes might have on the completed machine, they need to optimize each of their components separately. In theory, this approach should lead to a possibility of only minor component changes at the point when the complete machine is structurally analyzed. The optimization of each major component is a function of several defined sets of criteria, such as total weight and stiffness (both static and dynamic) under different types of load and boundary conditions. By establishing these criteria, the effectiveness of changes can be evaluated at different times of the machine’s development and optimization. When taking this design approach, it is safe to assume that complete machine tool structures, composed of optimized components, will not only have good static and dynamic characteristics, but also should be cost effective, as the total iron mass will be at a minimum for each component. Results of this process will be shown thru described component optimization changes of an actual new machine design from it’s concept, assembly and final testing.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing of vertical lathe sliding pillow based on TRIZ/DOE;2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM);2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3