Super Spatio-Temporal Resolution, Digital PIV System for Multi-Phase Flows With Phase Differentiation and Simultaneous Shape and Size Quantification

Author:

Abiven Claude1,Vlachos Pavlos P.1

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

A unique, super spatio-temporal resolution Digital Particle Image Velocimetry (DPIV) system for the analysis of time-dependent multiphase flows has been developed. The system delivers a sampling frequency between 1KHz and 10KHz, with continuous total acquisition time up to 4 secs and resolution 1Kx1K pixels down to 256×256 pixels. The hardware is integrated with sophisticated image processing algorithms that allow direct image segmentation in order to resolve the multiple phases present in the flow and provides quantitative information about the shape and size of droplets or bubbles present. Finally, the in-plane velocities are measured by a super-resolution, dynamically-adaptive cross-correlation algorithm which is coupled with a particle-tracking scheme. Each individual phase present in the flow is resolved with mean spatial resolution in the order of 3–4 pixels, and accuracy in the order of 0.01–0.1 pixels, while the spatial averaging effects of cross correlation are eliminated.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The air entrainment and hydrodynamic shear of the liquid slosh in syringes;International Journal of Pharmaceutics;2022-11

2. On flowing soap films as experimental models of 2D Navier–Stokes flows;Experiments in Fluids;2021-07-13

3. Planar Mie Scattering Method for Measurement of Spray Characteristics;51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2013-01-05

4. Evaluation of multiphase flotation models in grid turbulence via Particle Image Velocimetry;International Journal of Mineral Processing;2006-09

5. The Effect of Vortex Formation on Left Ventricular Filling and Mitral Valve Efficiency;Journal of Biomechanical Engineering;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3