Computational Modeling and Experimental Investigation of Static Straight-Through Labyrinth Seals

Author:

Untaroiu Alexandrina1,Goyne Christopher P.1,Untaroiu Costin D.1,Wood Houston G.1,Rockwell Robert1,Allaire Paul E.1

Affiliation:

1. University of Virginia, Charlottesville, VA

Abstract

To design highly efficient and stable turbomachines, engineers require accurate methods to model seal flows and calculate clearance-excitation forces generated by the eccentric position of the rotor. One of the most widely used methods to predict leakage flow and dynamic coefficients is the use of computer codes developed based on bulk flow theory. In recent years, computational fluid dynamics (CFD) modeling is increasingly being recognized as an accurate assessment tool for flow parameters and dynamic coefficients evaluation as compared to the bulk flow codes. This paper presents computational and experimental investigations that were carried out to calculate flow parameters in a stationary straight-through model labyrinth seal. The main objective of this study is to explore the capabilities of Ansys-CFX, a commercially available state of the art 3D numerical code, to accurately model compressible flow through the seals. The flow behavior is analyzed using CFD and the flow parameters calculated by CFD are validated against experimental data taken for the same seal configuration. The integrated values of leakage flow rates estimated from the computational results agree with the experimental data within 7.6%. This study serves as a benchmark case that supports further efforts in applying CFD analysis in conjunction with automatic design optimization techniques for seals used for compressible media. It was shown that optimization algorithms combined with CFD simulations have good potential for improving seal design.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3