Numerical Simulations of Vortex-Induced Vibration of Flexible Cylinders

Author:

Yamamoto Cassio T.1,Fregonesi Rodrigo A.1,Meneghini Julio R.1,Saltara Fabio1,Ferrari Jose´ A.2

Affiliation:

1. University of Sa˜o Paulo, Sa˜o Paulo, Brazil

2. Petrobras, Rio de Janeiro, Brazil

Abstract

The main purpose of this paper is to acquire a better understanding of the hydroelastic interactions, which take place between oscillating flexible cylinders and fluid forces. The cylinders are subjected to currents and shear flow, and the hydrodynamic forces are estimated by CFD tools. This article presents the results of an investigation being carried out at the University of Sa˜o Paulo, in which a discrete vortex method is used to simulate the flow around a flexible cylinder. The calculations are compared with results obtained employing the quasi-steady theory, as proposed by Ferrari [2]. Also, the calculations are compared with experiments of a cantilever flexible cylinder immersed in a current, see Fujarra [6]. The reduced velocity vs. non-dimensional amplitude curve obtained in our calculations is compared with the experimental results. Visualizations of the wake indicate a hybrid mode of vortex shedding along the span. A 2S mode is found in regions of low amplitudes, changing to a 2P mode in the regions of larger amplitudes. The position of the transition of the modes varies with the reduced velocity. Our intention is to apply this model to problems occurring in the offshore industry. In this industry fluids are conveyed from the seabed to the platform through slender structures called risers. These risers are subject to shear and oscillatory flows due to currents and waves, respectively, flows with a very high degree of complexity, with changes of intensity and direction the deeper the water depth. A finite element structural model based on the Euler-Bernoulli beam theory was developed. In order to evaluate the dynamic response, a general equation of motion is solved through a numerical integration scheme in the time domain. The hydrodynamic forces are evaluated in two-dimensional strips. The technique used is the Discrete Vortex Method, which is a Lagrangian numerical scheme to simulate an incompressible and viscous fluid flow. A practical case of marine risers is also presented. In this case the results for various uniform currents acting on a single, flexible cylinder, representing a riser of 120m with 100m under water, are shown. Envelopes of maximum and minimum in-line and transverse displacements are presented. There is also a comparison of a shear flow case between the CFD numerical code with the quasi-steady theory code developed by Ferrari [2].

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3