Optimal Rollover Prevention With Steer by Wire and Differential Braking

Author:

Carlson Christopher R.1,Gerdes J. Christian1

Affiliation:

1. Stanford University, Stanford, CA

Abstract

This paper uses Model Predictive Control theory to develop a framework for automobile stability control. The framework is then demonstrated with a roll mode controller which seeks to actively limit the peak roll angle of the vehicle while simultaneously tracking the driver’s yaw rate command. Initially, control law presented assumes knowledge of the complete input trajectory and acts as a benchmark for the best performance any controller could have on this system. This assumption is then relaxed by only assuming that the current driver steering command is available. Numerical simulations on a nonlinear vehicle model show that both control structures effectively track the driver intended yaw rate during extreme maneuvers while also limiting the peak roll angle. During ordinary driving, the controlled vehicle behaves identically to an ordinary vehicle. These preliminary results shows that for double lane change maneuvers, it is possible to limit roll angle while still closely tracking the driver’s intent.

Publisher

ASMEDC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model Predictive Control for Un-Tripped Rollover Prevention of Heavy Commercial Road Vehicles;2023 Ninth Indian Control Conference (ICC);2023-12-18

2. Design and Fabrication of Vehicle Rollover Prevention by Counter Steering Mechanism;Lecture Notes in Mechanical Engineering;2022-10-06

3. Active Anti-rollover Control of Wired Chassis;Vehicle Steer-by-Wire System and Chassis Integration;2022-09-24

4. Vehicle Rollover Avoidance by Parameter-Adaptive Reference Governor;2021 60th IEEE Conference on Decision and Control (CDC);2021-12-14

5. Nonlinear Vehicle Stability Analysis;AETA 2016: Recent Advances in Electrical Engineering and Related Sciences;2016-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3