Affiliation:
1. Georgia Institute of Technology
Abstract
To design today’s complex, multi-disciplinary systems, designers need a design method that allows them to systematically decompose a complex design problem into simpler sub-problems. Systems engineering provides such a framework. In an iterative, hierarchical fashion systems are decomposed into subsystems and requirements are allocated to these subsystems based on estimates of their attributes. In this paper, we investigate the role and limitations of modeling and simulation in this process of system decomposition and requirements flowdown. We first identify different levels of complexity in the estimation of system attributes, ranging from simple aggregation to complex emergent behavior. We also identify the main obstacles to the systems engineering decomposition approach: identifying coupling at the appropriate level of abstraction and characterizing and processing uncertainty. The main contributions of this paper are to identify these short-comings, present the role of modeling and simulation in overcoming these shortcomings, and discuss research directions for addressing these issues and expanding the role of modeling and simulation in the future.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献