Dynamic Response Predictions of a Truck Tire Using Detailed Finite Element and Rigid Ring Models

Author:

Chae Seokyong1,El-Gindy Moustafa1,Trivedi Mukesh2,Johansson Inge2,O¨ijer Fredrik2

Affiliation:

1. Pennsylvania State University

2. Volvo 3P

Abstract

A detailed nonlinear finite element (FE) model of a radial-ply truck tire has been developed using an explicit FE code, PAM-SHOCK. The tire model was constructed to its extreme complexity with three-dimensional solid, layered membrane, and beam elements. In addition to the tire model itself, a rim model was included and rotated with the tire with proper mass and rotational inertial effects. The predicted tire responses, such as vertical stiffness, cornering force, and aligning moment, correlated very well to physical measurements. For complete vehicle simulations, a faster and simplified tire model is required for efficient analysis through-put. The behavior of such a tire model can be verified and improved by comparing responses with the developed FE model. Moreover, the parameters needed for the simplified model can be determined by the developed model instead of having to rely on tire measurements. The in-plane sidewall transitional stiffness and damping constants of the FE tire model were determined by rotating the tire on a cleat-drum. The other constants, such as in-plane rotational stiffness and damping constants, were determined by applying and releasing a tangential force on the rigid tread band of the FE tire model. The tire axle, spindle, and reaction force histories at longitudinal and vertical directions were recorded. In addition, the FFT algorithm was applied to examine the transient response in frequency domain. The tire steering characteristics were also determined. These parameters were used as input for a simplified rigid ring tire model. This study will discuss the results obtained from both the developed tire and the rigid ring tire models while both models are rolling at 12 mph constant linear speed and loading range of 13,345 N (3,000 lbs) to 53,378 N (12,000 lbs). The dynamic responses for the developed FE tire model were compared with the dynamics predicted using the rigid ring model. The results will show a successful attempt to capture the transient response of a tire rolling over a complex road profile.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Design Tool for Tire Braking Performance Evaluations;Journal of Dynamic Systems, Measurement, and Control;2015-07-01

2. Dynamic Response Predictions of Quarter-Vehicle Models Using FEA and Rigid Ring Truck Tire Models;Design Engineering and Computers and Information in Engineering, Parts A and B;2006-01-01

3. In-Plane and Out-of-Plane Dynamic Response Predictions of a Truck Tire Using Detailed Finite Element and Rigid Ring Models;Design Engineering, Parts A and B;2005-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3