Time-Frequency Analysis and Built-In Reliability Test for Health Monitoring of Electronics Under Shock Loads

Author:

Lall Pradeep1,Choudhary Prakriti1,Gupte Sameep1,Gupta Prashant1,Suhling Jeff1,Hofmeister James2

Affiliation:

1. Auburn University, Auburn, AL

2. Ridgetop, Inc., Tucson, AZ

Abstract

The built-in stress test (BIST) is extensively used for diagnostics or identification of failure. The current version of BIST approach is focused on reactive failure detection and provides limited insight into reliability and residual life. A new approach has been developed to monitor product-level damage during shock and vibration. The approach focuses on the pre-failure space and methodologies for quantification of failure in electronic equipment subjected to shock and vibration loads using the dynamic response of the electronic equipment. Presented methodologies are applicable at the system-level for identification of impending failures to trigger repair or replacement significantly prior to failure. Leading indicators of shock-damage have been developed to correlate with the damage initiation and progression in shock and drop of electronic assemblies. Three methodologies have been investigated for feature extraction and health monitoring including development of a new solder-interconnect built-in reliability test, FFT based statistical-pattern recognition, and time-frequency moments based statistical pattern recognition. The solder-joint built-in-reliability-test has been developed for detecting high-resistance and intermittent faults in operational, fully programmed field programmable gate arrays. Frequency band energy is computed using FFT and utilized as the classification feature to check for damage and failure in the assembly. In addition, the Time Frequency Analysis has been used to study of the energy densities of the signal in both time and frequency domain, and provide information about the time-evolution of frequency content of transient-strain signal. Closed-form models have been developed for the eigen-frequencies and mode-shapes of electronic assemblies with various boundary conditions and component placement configurations. Model predictions have been validated with experimental data from modal analysis. Pristine configurations have been perturbed to quantify the degradation in confidence values with progression of damage. Sensitivity of leading indicators of shock-damage to subtle changes in boundary conditions, effective flexural rigidity, and transient strain response have been quantified. Explicit finite element models have been developed and various kinds of failure modes have been simulated such as solder ball cracking, package falloff and solder ball failure. This allows the physical quantification of solder ball crack damage in the form of confidence values and provides a damage index that can be utilized for the health monitoring of solder interconnects in an electronic assembly.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prognostic Health Monitoring Method for Fatigue Failure of Solder Joints on Printed Circuit Boards Based on a Canary Circuit;Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems;2018-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3