Development of a Unique, Passive, Microgravity Vortex Separator

Author:

Ellis M.1,Kurwitz C.1,Best F.1

Affiliation:

1. Texas A&M University

Abstract

In the microgravity environment experienced by space vehicles, liquid and gas do not naturally separate as on Earth. This behavior presents a problem for two-phase space systems, such as environment conditioning, waste water processing, and power systems. Furthermore, with recent renewed interest in space nuclear power systems, a microgravity Rankine cycle is attractive for thermal to electric energy conversion and would require a phase separation device. Responding to this need, researchers have conceived various methods of producing phase separation in low gravity environments. These separator types have included wicking, elbow, hydrophobic/hydrophilic, vortex, rotary fan separators, and combinations thereof. Each class of separator achieved acceptable performance for particular applications and most performed in some capacity for the space program. However, increased integration of multiphase systems requires a separator design adaptable to a variety of system operating conditions. To this end, researchers at Texas A&M University (TAMU) have developed a Microgravity Vortex Separator (MVS) capable of handling both a wide range of inlet conditions as well as changes in these conditions with a single, passive design. Currently, rotary separators are recognized as the most versatile microgravity separation technology. However, compared with passive designs, rotary separators suffer from higher power consumption, more complicated mechanical design, and higher maintenance requirements than passive separators. Furthermore, research completed over the past decade has shown the MVS more resistant to inlet flow variations and versatile in application. Most investigations were conducted as part of system integration experiments including, among others, propellant transfer, waste water processing, and fuel cell systems. Testing involved determination of hydrodynamic conditions relating to vortex stability, inlet quality effects, accumulation volume potential, and dynamic volume monitoring. In most cases, a 1.2 liter separator was found to accommodate system flow conditions. This size produced reliable phase separation for liquid flow rates from 1.8 to 9.8 liters per minute, for gas flow rates of 0.5 to 180 standard liters per minute, over the full range of quality, and with fluid inventory changes up to 0.35 liters. Moreover, an acoustic sensor, integrated into the wall of the separation chamber, allows liquid film thickness monitoring with an accuracy of 0.1 inches. Currently, application of the MVS is being extended to cabin air dehumidification and a Rankine power cycle system. Both of these projects will allow further development of the TAMU separator.

Publisher

ASMEDC

Reference9 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modification of Jet Exiting a Cyclone Chamber;AIAA Scitech 2020 Forum;2020-01-05

2. Development of a passive phase separator for space and earth applications;Separation and Purification Technology;2017-12

3. Development of Packed Bed Reactor ISS Flight Experiment;50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2012-01-09

4. Computational Investigation of the NASA Cascade Cyclonic Separation Device;46th AIAA Aerospace Sciences Meeting and Exhibit;2008-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3