Three-Axis Gimbal Surveillance Algorithms for Use in Small UAS

Author:

Ranganathan Jaganathan1,Semke William H.1

Affiliation:

1. University of North Dakota, Grand Forks, ND

Abstract

An active three-axis gimbal system is developed to allow small fixed wing Unmanned Aircraft Systems (UAS) platforms to estimate accurate position information by pointing at a target and also to track a known target location. Specific targets vary from a stationary point on the ground to aircraft in the national airspace. The payload developed to accomplish this at the University of North Dakota is the Surveillance by University of North Dakota Observational Gimbal (SUNDOG). This paper will focus on a novel, nonlinear closed form analytical algorithm developed to calculate the exact rotation angles for a three-axis gimbal system to point a digital imaging sensor at a target, as well as how to estimate accurate position of a target by using the pointing angles of a three-axis gimbal system. A kinematic analysis is done on a three-axis gimbal system to get the appropriate model of gimbal rotations in order to point at a certain location on the ground. The mathematical model includes an inertial coordinate system that has coordinates fixed to the Earth, a coordinate system that is body-fixed to the aircraft, and a third coordinate system that is fixed to the gimbal. Therefore, multiple three-dimensional transformations are required to accurately provide the necessary pointing angles to the gimbal system. The autonomous control system uses Global Positioning System (GPS), Inertial Measurement Unit (IMU), and other sensor data to estimate position and attitude during flight. Since the algorithm is entirely based on Inertial Measurement Unit (IMU) and Global Positioning System (GPS) device inputs, any error from these devices cause offset in the target location. Hence, an error analysis is carried out to find the offset distance and the operating range of the algorithm. The main advantage obtained in the three-axis gimbal system is that the orientation of the image will always be aligned in a specified direction for effective interpretation. The closed form expressions to the non-linear transformations provide simple solutions easily programmed without large computational expense. Experimental work will be carried out in a controlled environment and in flight testing to show the autonomous tracking ability of the gimbal system. Simulation and experimental data illustrating the effectiveness of the surveillance algorithms is presented.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3