Experimental Investigations of Sound From Flow Over Rough Surfaces

Author:

Anderson Jason M.1,Stewart Devin O.1,Blake William K.1

Affiliation:

1. Naval Surface Warfare Center, Carderock Division, West Bethesda, MD

Abstract

Turbulent boundary layer flows over rough surfaces are known to produce elevated far-field acoustic sound levels. The nature by which surface irregularities alter the near-field surface pressures and subsequently affect the sound generation to the scattering of high wavenumber convective pressures to low wavenumber acoustic pressures, which is typically interpreted as a dipole-like source. The focus of the current investigation is the experimental interrogation of both near- and far-field pressures due to the flow over roughened surfaces in order to identify the source mechanisms and to validate physical models of roughness sound. For rough surfaces composed of large geometrical elements (defined by large Reynolds numbers based on roughness height and friction velocity), such as hemispheres and cubes, the measured near-field surfaces pressures indicate that the local interstitial flows become important in determining the sound radiation characteristics. In order to describe the aeroacoustic source region, scaling laws are developed for surface pressures at locations around the roughness elements for various roughness configurations and flow speeds. Relationships between surface pressures amongst the rough surface elements and far-field pressures measured at several directional aspects were examined to identify roughness sound source mechanisms. Measurements of a dipole directivity pattern and dipole efficiency factors obtained when normalizing radiated sound by surface pressures offer support to the scattering theories for roughness sound. Using existing pressure scattering models as a basis, an empirical model for roughness sound is generated.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3