Leakage Flow Analysis for a MEMS Rotary Engine

Author:

Heppner Joshua D.1,Walther David C.1,Pisano Albert P.1

Affiliation:

1. University of California at Berkeley, Berkeley, CA

Abstract

An internal leakage flow analysis is presented for a MEMS fabricated rotary engine in order to establish design parameters for micro engine sealing systems. This research is part of the MEMS Rotary Engine Power System (REPS) group effort to develop a portable power system based on an integrated generator and Wankel rotary internal combustion engine. In order to have acceptable system efficiency, it is necessary to suppress internal leakage and thereby maintain a critical level of compression ratio. There are two inherent leakage paths in rotary engines, which result in blowby and reduced compression ratio: leakage around the apexes of the rotor and leakage across the rotor faces. These sealing issues arise due to the large pressure gradients, which occur along these leakage paths in the combustion chamber. It is the aim of this work to examine the effects of reduced scale on both traditional and novel rotary engine apex sealing mechanisms. In contrast to the macro scale, viscous forces have an increased importance in micro scale engines since Re~.01. A simplified Poiseuille-Couette flow model has been developed to analyze the leakage flows of rotary type engines. Since the Reynolds number for the MEMS REPS is extremely small, the model assumes that the flow is laminar, viscous, incompressible, and steady with air as the working fluid. The model indicates that if a 1 μm gap can be maintained between the housing and moving parts (rotor apexes and faces), leakage flows at expected engine operation speeds will only reduce the compression ratio from 8.3:1 to 6.1:1 so long as the rotation speed is greater than 10,000 rpm. It is doubtful that a traditional or simple micromachine design will yield such a gap and therefore several novel, integrated sealing approaches are under investigation. The model will determine design specification for one of these approaches, an integrated cantilever flexure apex. In conjunction with the theoretical model, a scaled engine experiment at the macro scale is used to verify the modeling effort. The scaling of the experiment complies with Reynolds scaling and ensures that Hele-Shaw flow within the leakage paths is maintained. The experiment does not operate as a functional engine, rather the experiment is designed to maintain a precise clearance between the rotor and housing. In order to preclude additional pressure driven flow effects, an electric motor is used to spin the rotor and simulate the rotation expected due to the combustion pressure acting on the rotor face.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3