Affiliation:
1. Pennsylvania State University
2. Fluent, Inc.
Abstract
Traditional fluid mechanics textbooks are generally written with problem sets comprised of closed, analytical solutions. However, it is recognized that complex flow fields are not easily represented in terms of a closed solution. A tool that allows the student to visualize complex flow phenomena in a virtual environment can significantly enhance the learning experience. Such a visualization tool allows the student to perform open-ended analyses and explore cause-effect relationships. Computational fluid dynamics (CFD) brings these benefits into the learning environment for fluid mechanics. With these benefits in mind, FlowLab was introduced by Fluent Inc. in 2002. FlowLab may be described as a virtual fluids laboratory - a computer-based analysis and visualization package. Using this software, students solve predefined CFD exercises, either as homework or in a supervised laboratory or practicum setting. Predefined exercises facilitate the teaching of fluid mechanics and provide students with hands-on CFD experience, while avoiding many of the difficulties associated with learning a generalized CFD package. A new fluid mechanics textbook is scheduled for release in early 2005. This book includes FlowLab as a textbook companion, where student-friendly CFD exercises are employed to convey important concepts to the student. Because of the unique design of end-of-chapter homework problems in this book and the intimate coupling between these problems and the CFD software, students are introduced to engineering problems and concepts, as well as to CFD, via a structured learning process. The CFD exercises are not meant to stand alone; rather, they are designed to support and emphasize the theory and concepts taught in the textbook, which is the primary learning vehicle. Each homework problem has a specific fluid mechanics learning objective. Through use of the software, a second learning objective is also achieved, namely a CFD objective. The scope, content, and presentation of these CFD exercises are discussed in this paper. Additionally, one of the exercises is explained in detail to show the value of using CFD to teach introductory fluid mechanics to undergraduate engineers.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Learning and Teaching Fluid Dynamics using Augmented and Mixed Reality;2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct);2022-10
2. Integration of Computational Fluid Dynamics and Experimentation in Undergraduate Fluid Mechanics;Innovations in Engineering Education: Mechanical Engineering Education, Mechanical Engineering Technology Department Heads;2006-01-01
3. Theory, Simulation, and Hardware: Lab Design for an Integrated System Dynamics Education;Innovations in Engineering Education: Mechanical Engineering Education, Mechanical Engineering/Mechanical Engineering Technology Department Heads;2005-01-01