Effectiveness of the Cryogenic Treatment of Tungsten Carbide Inserts on Tool Wear When in Full Production Operations

Author:

Arner Kenneth A.1,Agosti Christopher D.1,Roth John T.1

Affiliation:

1. Pennsylvania State University at Erie

Abstract

As a cutting tool wears, the quality of the parts being produced by the tool are reduced. Therefore, it is important to change cutting tools whenever the wear on the tool begins to cause unacceptable or out-of-specification parts. However, frequent replacement of tooling is not only expensive, it also results in a loss of production throughput. Therefore, in order to lower tooling costs and increase production rates, it is vital to extend cutting tool life. Thus, this research focuses on establishing the effect that cryogenically treating carbide inserts has on the overall tool life when the tools are operating in production. To validate the effectiveness, multiple treated and untreated cutting tools for five styles of inserts are examined. The cutters are tested in production lines that are fabricating parts for an industrial partner where the only process variable that is changed is the cryogenic treatment of the tooling. For the five insert styles tested, each style provided very consistent changes in overall tool life. However, the amount of improvement was dependent on the tool style. One style was found to have its life doubled, whereas, another style had its life decreased. Possible causes for this difference in effectiveness of the treatment are presented, along with a discussion concerning the actual costs savings that the treatment represents for the industrial partner.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryogenic Treatment of Materials: Cutting Tools and Polymers;Polymers at Cryogenic Temperatures;2013

2. Cryoprocessing of cutting tool materials—a review;The International Journal of Advanced Manufacturing Technology;2009-08-28

3. TURNING STUDIES OF DEEP CRYOGENIC TREATED P-40 TUNGSTEN CARBIDE CUTTING TOOL INSERTS – TECHNICAL COMMUNICATION;Machining Science and Technology;2009-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3