Affiliation:
1. Pennsylvania State University at Erie
Abstract
As a cutting tool wears, the quality of the parts being produced by the tool are reduced. Therefore, it is important to change cutting tools whenever the wear on the tool begins to cause unacceptable or out-of-specification parts. However, frequent replacement of tooling is not only expensive, it also results in a loss of production throughput. Therefore, in order to lower tooling costs and increase production rates, it is vital to extend cutting tool life. Thus, this research focuses on establishing the effect that cryogenically treating carbide inserts has on the overall tool life when the tools are operating in production. To validate the effectiveness, multiple treated and untreated cutting tools for five styles of inserts are examined. The cutters are tested in production lines that are fabricating parts for an industrial partner where the only process variable that is changed is the cryogenic treatment of the tooling. For the five insert styles tested, each style provided very consistent changes in overall tool life. However, the amount of improvement was dependent on the tool style. One style was found to have its life doubled, whereas, another style had its life decreased. Possible causes for this difference in effectiveness of the treatment are presented, along with a discussion concerning the actual costs savings that the treatment represents for the industrial partner.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献