Axial and Lateral Impact Prediction of Composite Structures Using Explicit Finite Element Analysis

Author:

Caliskan Ari G.1

Affiliation:

1. Ford Motor Company, Dearborn, MI

Abstract

The use of composite materials in the automotive industry is growing since these materials exhibit high stiffness, strength and low weight. As such, analytical capabilities must be developed in order for these materials to be used in more structural applications. Previous work in the area of crush performance has concentrated on experimental and empirical studies that have qualitatively characterized the crush process. These studies have shown that the crush process in composite materials is complex, and is dominated by fiber/matrix microcracking, which is the main energy absorption mechanism. In this study, the crush performance of a set of tubular composite structures were modeled using the explicit code RADIOSS™. Unlike many of the other commercially available codes, the composite material model within RADIOSS uses material input parameters that can be easily extracted from basic material test. These tests would include a 0° and 90° tensile and compressive test, as well as an in-plane shear test. The model can also accommodate strain rate effects. As the structure is loaded, the stresses within each element and ply are calculated. Using a Tsai-Wu failure criterion, the material fracture is simulated by removing a failed ply within a given element. As a consequence, the material degradation within and ahead of the crush front is simulated. The results of the study showed that the steady state crush load could be predicted accurately. However, the exact failure mode with the crushed structure was not as accurately represented in the model. In addition, two other case studies one being a 3-point bending on a hexagonal section and composite sandwich plate impact analysis were also performed. The results showed good agreement with experiments in both load levels and failure modes.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3