Experimental Study on Quenching of a Small Metal Sphere in Nanofluids

Author:

Kim H.1,Buongiorno J.1,Hu L. W.1,McKrell T.1,DeWitt G.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

The objective of this research is to systematically investigate the quenching characteristics of a hot sphere in nanofluids. The experiments are carried out with a small (9.5 mm) stainless steel sphere with initial temperatures near 1000 °C. Alumina nanofluids and deionized water are tested at low volume concentrations (less than 0.1% by volume) and saturated conditions (100 °C). The results show that the quenching behavior in nanofluids is nearly identical to that in pure water. Moreover it is found that some nanoparticles accumulate on the sphere surface during the quenching process. Such accumulation of nanoparticles on the surface promotes the destabilization of the vapor film in subsequent quenching experiments, thus accelerating the return to nucleate boiling at higher temperature than that in the clean surface case.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time in DNB experimental study on Cr coated zircaloy cladding;Applied Thermal Engineering;2024-07

2. Nanofluid Quench Media for Industrial Heat Treatment;Quenchants and Quenching Technology;2024-02-01

3. Nanofluid Quench Media for Industrial Heat Treatment;Quenchants and Quenching Technology;2024-02-01

4. COMSOL Simulation for Design of Induction Heating System in VULCAN Facility;Science and Technology of Nuclear Installations;2021-08-19

5. Nanofluids for heat transfer applications: a review;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2018-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3