Thermal Runaway Characteristics of Ni-Rich Lithium-Ion Batteries Employing Triphenyl Phosphate-Based Electrolytes

Author:

Gao Zhenhai11,Rao Shun11,Wang Yupeng11,Xiao Yang11,Li Weifeng11,Zhang Zien2,Yuan Quan3

Affiliation:

1. Jilin University National Key Laboratory of Automotive Chassis Integration and Bionics, , Changchun 130025 , China ; College of Automotive Engineering, , Changchun 130025 , China

2. Zhuhai Campus of Zunyi Medical University , Zhuhai 519041 , China

3. Ningbo University of Technology Department of Mechanical Engineering, Vehicle Energy and Safety Laboratory, , Ningbo 315336 , China

Abstract

Abstract Enhancing the safety performance of high-energy-density lithium-ion batteries is crucial for their widespread adoption. Herein, a cost-effective and highly efficient electrolyte additive, triphenyl phosphate (TPP), demonstrates flame-retardant properties by scavenging hydrogen radicals in the flame, thereby inhibiting chain reactions and flame propagation to enhance the safety performance of graphite/LiNi0.8Co0.1Mn0.1O2 (Gr/NCM811) pouch cells. The results reveal that the capacity retention of cells without flame retardants, and those with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP is 96.4%, 92.1%, 84.15%, 40.8%, and 12.4% (at 1/2C 300 cycles), respectively. Furthermore, compared to cells without flame retardants, the highest temperature during thermal runaway (TR) decreases by 8.3%, 26.9%, 35.1%, and 38.8% with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP, respectively. Through comprehensive analysis of the impact of flame-retardant additives on battery electrochemical performance and safety, it is determined that the optimal addition amount is 3 wt%. At this level, there are no significant flames during battery abuse, the triggering temperature for TR increases by 26.6 ℃, and the maximum temperature decreases by 157 ℃. Moreover, even after 300 cycles at 1/2C, a capacity of 814.5 mAh is retained, with a capacity retention rate of 84.1%. This study provides valuable insights into mitigating TR in high-energy-density power batteries.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3