Topology Optimization of the Misaligned Water-Lubricated Thrust Bearings

Author:

Gu Chunxing1,Tu Jingyi2,Zhang Di34

Affiliation:

1. University of Shanghai for Science and Technology School of Mechanical Engineering, School of Intelligent Emergency Management, , Shanghai 200093 , China

2. University of Shanghai for Science and Technology School of Mechanical Engineering, , Shanghai 200093 , China

3. Shanghai JianQiao University School of Mechanical Electronic Technology, , Shanghai 201306 , China ;

4. Shanghai Maritime University Merchant Marine College, , Shanghai 201306 , China

Abstract

Abstract Misalignment results in uneven force on the contact surface, which not only increases friction loss but also shortens the bearing's service life, especially for water-lubricated bearings. In this study, an advanced approach is investigated to optimize the performance of the water-lubricated thrust bearings, in which the surface textures are introduced and optimized using topological optimization. By this approach, the influence of speed, misalignment angle, surface roughness, and lubrication state can be analyzed. The results demonstrate that with the increase in speed and the decrease in film thickness ratio, the topological texture's shape becomes increasingly slender. Additionally, the increase in misalignment angle results in a simpler texture. When the film thickness ratio remains unchanged, a decrease in surface roughness leads to a greater number of texture branches, resulting in a finer texture overall. When compared to the thrust bearing with the groove type texture, the thrust bearing with the optimized texture was found to have a higher load-carrying capacity, in some cases up to six times higher. The proposed approach offers valuable insights and directions for further research focused on enhancing the efficiency of texture optimization.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3