Effective Placement of a Cantilever Resonator on Flexible Primary Structure for Vibration Control Applications—Part 1: Mathematical Modeling and Analysis

Author:

Lundstrom Troy1,Jalili Nader2

Affiliation:

1. Department of Mechanical and Industrial Engineering, Piezoactive Systems Laboratory, Northeastern University, Boston, MA 02115 e-mail:

2. Professor Fellow ASME Department of Mechanical and Industrial Engineering, Piezoactive Systems Laboratory, Northeastern University, Boston, MA 02115 e-mail:

Abstract

In this Part 1 of a two-part series, the theoretical modeling and optimization are presented. More specifically, the effect of attachment location on the dynamics of a flexible beam system is studied using a theoretical model. Typically, passive/active resonators for vibration suppression of flexible systems are uniaxial and can only affect structure response in the direction of the applied force. The application of piezoelectric bender actuators as active resonators may prove to be advantageous over typical, uniaxial actuators as they can dynamically apply both a localized moment and translational force to the base structure attachment point. Assuming unit impulse force disturbance, potential actuator/sensor performance for the secondary beam can be quantified by looking at fractional root-mean-square (RMS) strain energy in the actuator relative to the total system, and normalized RMS strain energy in the actuator over a frequency band of interest with respect to both disturbance force and actuator beam mount locations. Similarly, by energizing the actuator beam piezoelectric surface with a unit impulse, one can observe RMS base beam tip velocity as a function of actuator beam position. Through such analyses, one can balance both sensor/actuator performance and make conclusions about optimally mounting the actuator beam sensor/actuator. Accounting for both sensing and actuation requirements, the actuator beam should be mounted in the following nondimensionalized region: 0.4≤e≤0.5.

Publisher

ASME International

Subject

General Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3