On the Impact of Aspect Ratio and Other Geometric Effects on the Stability of Rectangular Thermosiphons

Author:

Nguyen Tri1,Merzari Elia1

Affiliation:

1. Ken and Mary Alice Lindquist Department of Nuclear Engineering, The Pennsylvania State University, 228 Hallowell, University Park, PA 16802

Abstract

Abstract Single-phase natural circulation thermosiphon loops have been attracting increased interest as they represent the prototype of passive safety systems. However, the stability properties of thermosiphon loops, which can affect and compromise their functionality, are still actively investigated. Traditionally, the stability analysis of thermosiphon loops has been simplified to one-dimensional (1D) calculations, on the argument that the flow would be monodimensional when the diameter of the pipe D is orders of magnitude smaller than the length of the loop Lt. However, at lower Lt/D ratios, rectangular thermosiphon loops show that the flow presents three-dimensional (3D) effect, which also has been confirmed by stability analyses in toroidal loops. In this paper, we performed a series of high-fidelity simulations using the spectral-element code nek5000 to investigate the stability behavior of the flow in rectangular thermosiphon loops. A wide range of Lt/D ratio from 10 to 200 has been considered, and the results show many different outcomes compared to previous 1D analytical calculations or stability theory. Moreover, we analyzed the flow in rectangular thermosiphon loops using proper orthogonal decomposition (POD), and we observed that the cases without flow reversal are characterized by swirl modes typical of bent pipes and high-frequency oscillation of the related time coefficients obtained by Galerkin projection. However, the swirl mode was not observed in cases with flow reversals, and these cases are characterized by symmetric flow field at second POD mode and the similarity of low-frequency oscillation in the projection of POD modes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference38 articles.

1. Experimental Observations on the General Trends of the Steady State and Stability Behaviour of Single-Phase Natural Circulation Loops;Nucl. Eng. Des.,2002

2. An Experimental Investigation of Single-Phase Natural Circulation Behavior in a Rectangular Loop With Al2O3 Nanofluids;Exp. Therm. Fluid Sci.,2008

3. A Reduced-Order Partial Differential Equation Model for the Flow in a Thermosyphon;J. Fluid Mech.,2005

4. Boundary Condition Effects on Flow Stability in a Toroidal Thermosyphon;Int. J. Heat Fluid Flow,2002

5. On the Oscillatory Instability of a Differentially Heated Fluid Loop;J. Fluid Mech.,1967

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3