Threshold Dynamics and Bifurcation of a State-Dependent Feedback Nonlinear Control Susceptible–Infected–Recovered Model1

Author:

Cheng Tianyu1,Tang Sanyi2,Cheke Robert A.3

Affiliation:

1. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China

2. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China e-mails: ;

3. Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK

Abstract

A classic susceptible–infected–recovered (SIR) model with nonlinear state-dependent feedback control is proposed and investigated in which integrated control measures, including vaccination, treatment and isolation, are applied once the number of the susceptible population reaches a threshold level. The interventions are density dependent due to limitations on the availability of resources. The existence and global stability of the disease-free periodic solution (DFPS) are addressed, and the threshold condition is provided, which can be used to define the control reproduction number Rc for the model with state-dependent feedback control. The DFPS may also be globally stable even if the basic reproduction number R0 of the SIR model is larger than one. To show that the threshold dynamics are determined by the Rc, we employ bifurcation theories of the discrete one-parameter family of maps, which are determined by the Poincaré map of the proposed model, and the main results indicate that under certain conditions, a stable or unstable interior periodic solution could be generated through transcritical, pitchfork, and backward bifurcations. A biphasic vaccination rate (or threshold level) could result in an inverted U-shape (or U-shape) curve, which reveals some important issues related to disease control and vaccine design in bioengineering including vaccine coverage, efficiency, and vaccine production. Moreover, the nonlinear state-dependent feedback control could result in novel dynamics including various bifurcations.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3