Theoretical Study on Transient Hot-Strip Method by Numerical Analysis

Author:

Wei Gaosheng1,Du Xiaoze1,Zhang Xinxin2,Yu Fan2

Affiliation:

1. School of Energy and Power Engineering, Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China

2. Department of Thermal Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

This paper presented the effects of finite dimensions of the sample and nonzero heat capacity of the strip on thermal conductivity determination with the transient hot-strip method. Through the numerical analysis of the temperature field within the system composed of the samples and the strip, the temperature transients at the strip surface were obtained to calculate the thermal conductivities of materials, which were compared with the exact values. The effect of heat losses out of the external surfaces of the sample and the heat capacity of the strip on thermal conductivity determination were then analyzed comprehensively. It is shown that the sample finite dimensions have a great effect on thermal conductivity determination, especially on the materials with relatively higher thermal diffusivities, and the measured thermal conductivity is always lower than the exact value due to the lower convective heat transfer coefficient out of the external surfaces of the sample. The measurement error is estimated to be less than 2.1% for the material with thermal diffusivity less than 4.0×10−6 m2/s with the sample dimensions of 120×60 mm2(width×thickness) and the fitting time interval of 20–300 s. The nonzero heat capacity of the strip has a great effect on thermal conductivity determinations of the materials with relatively lower thermal diffusivities. The measurement error is estimated to be less than 5% for the material with thermal diffusivity larger than 0.8×10−7 m2/s with Cr20Ni80 alloy as the strip.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3