Comparison of Microscale Rapid Prototyping Techniques

Author:

Hoople Gordon D.1,Rolfe David A.2,McKinstry Katherine C.3,Noble Joanna R.2,Dornfeld David A.4,Pisano Albert P.5

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720 e-mail:

2. Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720

3. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

4. Department of Mechanical Engineering, Will C. Hall Family Professor of Engineering, University of California, Berkeley, Berkeley, CA 94720

5. Dean Jacobs School of Engineering, Distinguished Professor, MAE and ECE, Walter J. Zable Endowed Chair of Engineering, University of California, San Diego, La Jolla, CA 92093

Abstract

Recent advances in manufacturing techniques have opened up new interest in rapid prototyping at the microscale. Traditionally microscale devices are fabricated using photolithography, however this process can be time consuming, challenging, and expensive. This paper focuses on three promising rapid prototyping techniques: laser ablation, micromilling, and 3D printing. Emphasis is given to rapid prototyping tools that are commercially available to the research community rather those only used in manufacturing research. Due to the interest in rapid prototyping within the microfluidics community a test part was designed with microfluidic features. This test part was then manufactured using the three different rapid prototyping methods. Accuracy of the features and surface roughness were measured using a surface profilometer, scanning electron microscope (SEM), and optical microscope. Micromilling was found to produce the most accurate features and best surface finish down to ∼100 μm, however it did not achieve the small feature sizes produced by laser ablation. The 3D printed part, though easily manufactured, did not achieve feature sizes small enough for most microfluidic applications. Laser ablation created somewhat rough and erratic channels, however the process was faster and achieved features smaller than either of the other two methods.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3