Research Progress on Improving the Photovoltaic Performance of Polymer Solar Cells

Author:

Wang Yanmin1

Affiliation:

1. College of Materials Science and Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao Economic & Technical Development Zone, Qingdao 266510, Shandong Province, P. R. China

Abstract

Although polymer materials possess the advantages such as low cost and easy fabrication of flexible and large-scale film for the application in photovoltaic devices, the performance of polymer-based solar cells, especially energy conversion efficiency is inferior to their inorganic counterpart due to the shorter charge diffusion length caused by the comparatively lower electric field between the electrodes. This paper reviewed the strategies to improve their photovoltaic properties mainly concentrated on modifying the polymer materials and ameliorating the device configuration. First, polythiophene (PT), poly(phenylene vinylene) (PPV), polyfullerene, and other novel polymer materials were introduced and the effective ways to modify their derivatives with more advantages were described in detail, for instance, copolymerization, incorporating additives and dyes, etc. Furthermore, the content of ameliorating the device configuration encompassed on inverted architecture, tandem structure, the introduction of buffer layers, thermal annealing, and the integration of optimized conditions. Finally, the effects of the improvement methods were concisely summarized, and the perspectives of the future research were put forth.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3