Backward Mapping Methodology for Design Synthesis

Author:

Lu Stephen C.-Y.1,Bukkapatnam Satish T. S.1,Ge Ping1,Wang Nanxin2

Affiliation:

1. University of Southern California

2. Ford Motor Company

Abstract

Abstract Design efficiency and robustness at early stage of parametric engineering design play a critical role in reducing cycle time and improving product quality in the overall product development process. Usually, the “forward mapping” approach, is used to find designs, where the desirable performances are satisfied through large iterations of analysis and evaluation from design space to performance space. However, these approaches are time-consuming and involve blind search if the engineering system simulation models and/or initial conditions are not appropriately selected. On the other hand, common “reverse engineering” methods use domain-specific assumptions and are not effective in generic scenarios where the presumed conditions are violated. In this paper, a Backward Mapping Methodology for Design Synthesis (BMDS) is presented that can help conduct design synthesis rapidly and robustly at early stage of parametric engineering design. BMDS is a surrogate model-based approach that combines the strengths of metamodeling and statistics. It can help designers explicitly identify the robust design solutions that satisfy the designer-specified performance requirements through a “backward mapping” from the performance space directly to the design space. Preliminary case studies show its effectiveness and potential to be used as a generic early stage parametric design synthesis methodology in the future.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel space-based design methodology for preliminary engineering design;The International Journal of Advanced Manufacturing Technology;2005-06-29

2. Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process;Journal of Mechanical Design;2003-12-01

3. Emergent Synthesis Methodologies for Manufacturing;CIRP Annals;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3