A Systematic Method for Optimal Integration of Smart Materials Into the Structure of High Speed Mechanisms

Author:

Yuan L.1,Rastegar J.1

Affiliation:

1. State University of New York at Stony Brook

Abstract

Abstract A systematic method is presented for the integration of smart (active) materials based actuators into the structure of mechanical systems in general and mechanisms with closed-loop chains in particular for the purpose of modifying the output motion of the system. In the resent study, the method is applied to a four-bar linkage mechanism with a constant input velocity for the purpose of eliminating the high harmonic component of the output link motion. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. For mechanisms with rigid links, the primary source of high harmonic motions is the nonlinearity of the kinematics of the closed-loop chain. The usually less prominent high harmonic motions due to joint and/or structural flexibility may be eliminated in a similar manner and will be addressed in future publications.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3