Nonlinear Vibration of Thin Elastic Plates, Part 1: Generalized Incremental Hamilton’s Principle and Element Formulation

Author:

Lau S. L.1,Cheung Y. K.2,Wu S. Y.2

Affiliation:

1. Department of Civil and Structural Engineering, Hong Kong Polytechnic, Hong Kong

2. Department of Civil Engineering, University of Hong Kong, Hong Kong

Abstract

The finite element method has been widely used for analyzing nonlinear problems, but it is surprising that so far only a few papers have been devoted to nonlinear periodic structural vibrations. In Part 1 of this paper, a generalized incremental Hamilton’s principle for nonlinear periodic vibrations of thin elastic plates is presented. This principle is particularly suitable for the formulation of finite elements and finite strips in geometrically nonlinear plate problems due to the fact that the nonlinear parts of inplane stress resultants are functions subject to variation and that the Kirchhoff assumption is included as part of its Euler equations. Following a general formulation method given in this paper, a simple triangular incremental modified Discrete Kirchhoff Theory (DKT) plate element with 15 stretching and bending nodal displacements is derived. The accuracy of this element is demonstrated via some typical examples of nonlinear bending and frequency response of free vibrations. Comparisons with previous results are also made. In Part 2 of this paper, this incremental element is applied to the computation of complicated frequency responses of plates with existence of internal resonance and very interesting seminumerical results are obtained.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3