An Asymptotic, Thermo-Diffusive Ignition Theory of Porous Solid Fuels

Author:

Kim Choong Se1,Chung Paul M.2

Affiliation:

1. Chemical Engineering Division, Argonne National Laboratory, Argonne, Ill.

2. Department of Energy Engineering, University of Illinois at Chicago Circle, Chicago, Ill.

Abstract

The governing equations of thermal ignition are analyzed for porous solid fuel, such as coal, of various two-dimensional and axisymmetric geometries by the Laplace asymptotic method. Mass diffusion of the gaseous oxidant through the porous fuel is included. The nonlinear partial differential equations of energy and mass balances in time-space coordinates containing the Arrhenius volumic chemical reaction terms are analyzed. By employing the Laplace asymptotic technique and by invoking a certain limit theorem, the governing equations are reduced to a first order ordinary differential equation governing the fuel surface temperature, which is readily solved numerically. Detailed discussion of the effects of the various governing parameters on ignition is presented. Because of the basically closed-form nature of the solutions obtained, many general and fundamental aspects of the ignition criteria hitherto unknown are found.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3