The Role of Streamwise Vorticity in Flows Over Turbomachine Blade Suction Surfaces

Author:

Gostelow J. P.1,McMullan W. A.1,Walker G. J.2,Mahallati A.3

Affiliation:

1. University of Leicester, Leicester, UK

2. University of Tasmania, Hobart, TAS, Australia

3. National Research Council of Canada, Ottawa, ON, Canada

Abstract

Streamwise streaks and vortices are frequently encountered in low Reynolds number flows over blading. Observations have shown that, in addition to flows over concave pressure surfaces, convex suction surfaces are also influenced by streamwise vortices. These observations are based on surface flow visualization studies and computational work with highly resolved Large Eddy Simulation. Fine scale organized streaks exist in the laminar regions of turbine and compressor blading and are predictable. For a turbine blade with a blunt leading edge, at Reynolds numbers typical of aircraft cruise conditions, the streamwise vorticity may persist, on a time-average basis, to influence the entire suction surface. Time resolution is required to capture the flow complexity that is fundamental for an understanding of the physical behavior of the laminar boundary layer and its separation and transition. Progress has been made in modeling and predicting transition and laminar separation and the new findings of interesting vortical behavior need to be incorporated. In the leading edge region spanwise vorticity may promote early transition and bubble closure; further downstream streamwise vorticity may become established. The physics of this streamwise vorticity imposes severe requirements on the temporal and spatial resolution of both experimental and computational methods. A narrow spanwise computational strip does not allow the streamwise vorticity to settle into an organized pattern; if it is to become organized, an adequate spanwise domain is required.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Large Eddy Simulation of gas turbine compressors;Progress in Aerospace Sciences;2012-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3