Reversing of Axial Flow Fans for Ventilation

Author:

Cyrus Vaclav1,Pelnar Jiri1,Cyrus Jan1

Affiliation:

1. AHT Energetika Ltd., Praha, Czech Republic

Abstract

Changing the flow direction in fans is frequently required in emergency situations in traffic tunnels, chemical plants and mines ventilation. Reverse flow in axial flow fan is often achieved using two methods: a) Changing direction of fan rotation and turning the stator vanes (Method I). b) Turning / resetting rotor blades during fan rotation (Method II). The required volume flow rate at flow reversal is usually at least 60% valid for normal fan working point. The motivation of the present paper is to compare the aerodynamic performance and 3D flow mechanism in fan stage at flow reversal carried out by the two methods above. In our paper conditions of the flow reversal are discussed. Theoretical relations are derived for both methods using fundamental equations valid for internal aerodynamics of axial flow compressors and fans. Parameters of three fan axial stages were measured on a 600 diameter test rig at standard and reverse conditions. The investigated fan ventilation stages had a design flow coefficient of 0.35 to 0.40 and pressure coefficient of 0.30. Flow field measurements were carried out with the use of 5-hole pressure probes in the stage planes. The blade rows flow mechanism at the standard and reverse conditions is described using test data obtained for both flow reversal methods. The flow simulation results were also used. It has been found in our investigations that moderate aerodynamic loading of the ventilation fans has better aerodynamic performance during flow reversal if Method II is used. Fan designers and users making the final decision relating to the selection of the flow reversal method should also include the reliability and cost of the reverse fan design with blade turning mechanism.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3