An Experimental and Modeling Study of Laminar Flame Speeds of Alternative Aviation Fuels

Author:

Kick Thomas1,Kathrotia Trupti1,Braun-Unkhoff Marina1,Riedel Uwe1

Affiliation:

1. German Aerospace Center (DLR), Stuttgart, Germany

Abstract

The present work reports on measurements of burning velocities of synthetic fuel air mixtures exploiting the cone-angle method, as part of the EU project ALFA-BIRD. The GtL (Gas-to-Liquid)-air mixtures — (i) 100% GtL and (ii) GtL+20% hexanol, respectively — were studied at atmospheric pressure, with values of the equivalence ratio φ ranging between φ ∼ 1.0 and φ ∼ 1.3, at preheat temperatures To = 423 K (GtL+20% hexanol) as well as To = 473 K (for 100% GtL and GtL+20% hexanol). A comparison between experimentally obtained burning velocities and predicted values of laminar flame speed is presented, too. In general, good agreement was found between predicted and measured data for the range of conditions considered in the present study. The predictive capability of the detailed reaction model consisting of 3479 reactions involving 490 species will be discussed focusing on the laminar flame speed and the combustion of the components (n-decane, iso-octane, and 1-hexanol) of the surrogate used.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methods and tools for the characterisation of a generic jet fuel;CEAS Aeronautical Journal;2019-01-30

2. An Investigation of Combustion Properties of Butanol and Its Potential for Power Generation;Journal of Engineering for Gas Turbines and Power;2018-06-15

3. Paths to alternative fuels for aviation;CEAS Aeronautical Journal;2018-03-09

4. A Study on the Emissions of Alternative Aviation Fuels;Journal of Engineering for Gas Turbines and Power;2017-03-21

5. The Influence of Diluent Gases on Combustion Properties of Natural Gas: A Combined Experimental and Modeling Study;Journal of Engineering for Gas Turbines and Power;2016-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3