Effect of Swirl Number and Fuel Type Upon the Combustion Limits in Swirl Combustors

Author:

Abdulsada Mohammed1,Syred Nicholas1,Griffiths Anthony1,Bowen Phil1,Morris Steve1

Affiliation:

1. Cardiff University, Cardiff, Wales, UK

Abstract

Increasing interest in lean fuel premixed swirl combustors has arisen because of reduced NOx emissions. Alternative fuels, including hydrogen-enriched natural gas and by products of process industries such as coke oven gas are now receiving increasing attention. This gives rise to areas of concern including, flashback, temperature levels, blow-off and combustion instability. Flashback with hydrogen containing fuels is of special concern, owing to the high flame speed of hydrogen, to such an extent that diffusion combustion is commonly employed resulting in high NOx emissions. This paper examines the effect of hydrogen containing fuels upon flashback and blow-off in a generic, compact, premixed swirl burner in swirl number regimes representative of those found in practical systems. All results are obtained at atmospheric pressure without air preheat as a precursor to pressurised tests, the burner firing freely into atmosphere for most tests. The swirler has radial tangential inlets firing into a swirl chamber, which then feed into the exhaust. A central fuel injector just extends into the exhaust and is ∼40% of the exhaust diameter, a common industrial size. Four tangential inlets are used for S = 1.47, while nine has been used for S = 1.04 and S = 0.8. Flashback and blow-off are sensitive to the level of swirl, the exhaust configuration and the type of fuel. High swirl numbers, S = 1.47, gave flashback limits with methane considerably worse than those produced at S = 1.04 and S = 0.8, although there were differences in exhaust nozzle configuration. At equivalence ratios ∼1 total mass flow at which flashback occurred (hence velocities) was reduced by a factor of two. Changes in flashback behaviour were especially noticeable when the hydrogen content in fuel blends was > 60% by volume. Blow-off was very much a function of hydrogen content of the fuel and Swirl Number. Best blow-off limits for all fuel blends are obtained at S = 0.8, the worst for S = 1.47. Coke Oven gas (COG) with 65% hydrogen content gave best blow-off limits of the fuels tested, although data was not available for pure hydrogen due to rig limitations.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3