A Method for Theoretical Prediction of Frequency Scatter Ranges for Freestanding Forged Steam Turbine Blades

Author:

Gro¨nsfelder Thomas1,Hofbauer Alexander1,Richter Christoph H.1

Affiliation:

1. Siemens AG – Energy Sector, Mu¨lheim/Ruhr, Germany

Abstract

Large steam turbine end stage rotating blades are commonly manufactured by forging and machining to the final geometry. As in every manufacturing process certain geometric tolerances have to be granted. In particular, the allowed tolerances on the airfoil geometry do have a significant influence on the natural frequencies of the final blades. The resulting frequency scatter is appreciated in terms of mistuning the whole ring of blades, as an adequate mistuning has shown advantages under unstalled flutter conditions. An excessively large band is not acceptable, due to the fact that the blade frequencies are tuned to not-coincide with harmonic multiples of the rotor speed under stationary operation. This paper describes a theoretical method for prediction of a manufactured blade design frequency scatter, based only on nominal geometric information about the blade. Therefore, it is suited to be used during the development of a blade without having a prototype produced. The method is divided into three different steps. First, a numerical experiment is performed creating a number of geometrically modulated FE models. These models are used in a calculation of natural frequencies. Second, these frequencies serve as input for an identification of a simple algebraic representation of the frequencies. This allows a fast calculation by interpolation without the need to process the FE models. Third, the identified simplified equation is used in conjunction with different optimization algorithms for analysis of the specific design characteristics. The validity of the chosen matrix equation is shown by comparison to the FE calculations, before different blade types are investigated. Characteristics and options of the implemented optimization routines are discussed. Finally, the comparison of differently tuned blade types are used to demonstrate the capabilities of the described algorithm.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3