System Analysis of IGFC With Exergy Recuperation Utilizing Low-Grade Coal

Author:

Nomura Risa1,Iki Norihiko1,Kurata Osamu1,Kawabata Masako1,Tsutsumi Atsushi2,Koda Eiichi3,Furutani Hirohide1

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

2. The University of Tokyo, Tokyo, Japan

3. Central Research Institute of Electric Power Industry (CRIEPI), Yokosuka, Kanagawa, Japan

Abstract

Integrated Coal Gasification Fuel Cell Combined Cycle (IGFC) is expected to be the most efficient power generation system in coal fired power generation systems [1,2]. The Japanese project of the Strategic Technical Platform for Clean Coal Technology (STEP-CCT) aims a target efficiency of 65% (HHV) with exergy recuperation. We have been analyzing the processes of the exergy recuperated Integrated Coal Gasification Combined Cycle (IGCC) and the Advanced IGCC (A-IGCC) [3] which is expected to be realized in 2040. Previous studies have indicated a limitation of the quantity of high temperature steam in the case of auto-thermal reactions with the fluidized bed coal gasifier in the A-IGCC, in particular for TIT 1500 °C class gas turbine. The Advanced IGFC (A-IGFC) system can reduce the exergy loss resulting from combustion, and its ‘exergy recuperation’ is appealing. The waste heat exhausted from the fuel cells is recycled to the gasifier for steam reforming in an endothermic reaction with a low exergy loss and a high cold gas efficiency. Our current study focuses on the optimization of the unit configurations of the A-IGFC including gasifier, compressor, solid oxide fuel cell (SOFC), combustor, gas turbine, heat recovery steam generator (HRSG), and steam turbine. The process simulator HYSYS®.Plant (Aspen technology Inc.) is employed in order to express the gasifier, the SOFC and the other units. The optimum construction over the whole system by numerical simulation was examined for higher energy utilization efficiency. Under ideal conditions using bituminous coal, we verified the power generation efficiency to be 64.5% (HHV). However, utilizing low-grade coals, i.e., lignite and sub-bituminous coal, is deemed an important future energy resource to compensate for a decreasing supply of good-quality bituminous coal. For these low-grade coals, the power generation efficiency was as high as 53.6% (HHV) under the following conditions: Gasifier inlet: coal 23.6 Kg/s (667 MJ/s), steam 16.44 kg/s; Reactor reforming gas: 30.0, 8.7, 2.0, 0.8, 0.3, 0.05, 0.24, 0.14, 0.1 and 5.5 kg/s for CO, CO2, H2, CH4, C2H4, C2H6, C3H6, HCN, N2 and H2O respectively. The projected power outputs with this system were, SOFC: 214 MW; Gas turbine: 318 MW; Steam turbine: 86 MW.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3