Numerical Analysis of Biomass-Derived Gaseous Fuels Fired in a RQL Micro Gas Turbine Combustion Chamber: Preliminary Results

Author:

Laranci Paolo1,Bursi Edoardo1,Fantozzi Francesco1

Affiliation:

1. University of Perugia, Perugia, Italy

Abstract

The economically sustainable availability of biomass residuals and the growing need to reduce carbon dioxide emissions from power generation facilities has driven the development of a series of processes that lead to the production of a variety of biomass-derived fuels gaseous fuels, such as syngas, pyrolysis gas, landfill gas and digester gas. These technologies can find an ideal coupling when used for fuelling micro gas turbines, especially for distributed power generation applications, in a range between 50 and 500 kWE. This paper features a report on numerical activity carried out at the University of Perugia on a 80 kWE micro gas turbine annular combustion chamber, featuring RQL technology, that has been numerically modeled in order to verify combustion requirements, principally in terms of air/fuel ratio and lower heating value, simulating mixtures with varying chemical composition. The use of CFD turbulence and combustion modeling, via both Eddy Break-up and non-adiabatic PPDF methods, allows us to evaluate flame temperatures and stability, NOx and unburnt hydrocarbons emissions, under various load conditions, for the different fuel mixtures taken into account.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3