Intelligent Operation of Siemens (SGT-300) DLE Gas Turbine Combustion System Over an Extended Fuel Range With Low Emissions

Author:

Bulat Ghenadie1,Liu Kexin1,Brickwood Gavin1,Sanderson Victoria1,Igoe Brian1

Affiliation:

1. Siemens Industrial Turbomachinery Ltd., Lincoln, UK

Abstract

The use of an innovative, intelligent control algorithm applied to the Siemens SGT-300 DLE engine is described. The algorithm ensures stable operation and minimises emissions over a wide variation in fuel composition. The Siemens 8MW class SGT-300 gas turbine has been in operation at the University of New Hampshire (USA) since 2006. As well as operating on natural gas or diesel, the engine also operates on a gas processed from a landfill. These gases have a variable Wobbe Index (WI) covering the range 29.7 to 49 MJ/m3. No modifications have been required to the standard DLE combustion hardware. Introduction of the intelligent control algorithm has been instrumental in achieving this tri-fuel capability. Accumulation of more than 10 000 hours running on non-standard fuel has been achieved. The intelligent control algorithm exploits knowledge of the stable operating window through continual modification of the fuel schedule to avoid both lean blow out and high metal temperatures. Operationally, this results in a reduction in the NOx emissions, through controlling the unmixedness, and higher engine reliability, through the response of the algorithm to flame stability. Combining these advantages the control algorithm can deliver reliable engine operation on variable composition fuels when using standard combustion hardware achieving single digit NOx emissions not only on natural gas but also on processed landfill gas. This paper describes the control algorithm and presents results of the development from high pressure combustion rig and engine development test to field operation with both natural gas and processed landfill gas.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3