Experimental and Numerical Characterization of Lean Hydrogen Combustion in a Premix Burner Prototype

Author:

Brunetti Iarno1,Riccio Giovanni2,Rossi Nicola1,Cappelletti Alessandro2,Bonelli Lucia1,Marini Alessandro2,Paganini Enrico1,Martelli Francesco2

Affiliation:

1. ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy

2. University of Florence, Florence, Italy

Abstract

The use of hydrogen as derived fuel for low emission gas turbine is a crucial issue of clean coal technology power plant based on IGCC (Integrated Gasification Combined Cycle) technology. Control of NOx emissions in gas turbines supplied by natural gas is effectively achieved by lean premixed combustion technology; conversely, its application to NOx emission reduction in high hydrogen content fuels is not a reliable practice yet. Since the hydrogen premixed flame is featured by considerably higher flame speed than natural gas, very high air velocity values are required to prevent flash-back phenomena, with obvious negative repercussions on combustor pressure drop. In this context, the characterization of hydrogen lean premixed combustion via experimental and modeling analysis has a special interest for the development of hydrogen low NOx combustors. This paper describes the experimental and numerical investigations carried-out on a lean premixed burner prototype supplied by methane-hydrogen mixture with an hydrogen content up to 100%. The experimental activities were performed with the aim to collect practical data about the effect of the hydrogen content in the fuel on combustion parameters as: air velocity flash-back limit, heat release distribution, NOx emissions. This preliminary data set represents the starting point for a more ambitious project which foresees the upgrading of the hydrogen gas turbine combustor installed by ENEL in Fusina (Italy). The same data will be used also for building a computational fluid dynamic (CFD) model usable for assisting the design of the upgraded combustor. Starting from an existing heavy-duty gas turbine burner, a burner prototype was designed by means of CFD modeling and hot-wire measurements. The geometry of the new premixer was defined in order to control turbulent phenomena that could promote the flame moving-back into the duct, to increase the premixer outlet velocity and to produce a stable central recirculation zone in front of the burner. The burner prototype was then investigated during a test campaign performed at the ENEL’s TAO test facility in Livorno (Italy) which allows combustion test at atmospheric pressure with application of optical diagnostic techniques. In-flame temperature profiles, pollutant emissions and OH* chemiluminescence were measured over a wide range of the main operating parameters for three fuels with different hydrogen content (0, 75% and 100% by vol.). Flame control on burner prototype fired by pure hydrogen was achieved by managing both the premixing degree and the air discharge velocity, affecting the NOx emissions and combustor pressure losses respectively. A CFD model of the above-mentioned combustion test rig was developed with the aim to validate the model prediction capabilities and to help the experimental data analysis. Detailed simulations, performed by a CFD 3-D RANS commercial code, were focused on air/fuel mixing process, temperature field, flame position and NOx emission estimation.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3