Affiliation:
1. Hamburg University of Applied Sciences, Hamburg, Germany
2. Technical University of Braunschweig, Braunschweig, Germany
3. MTU Maintenance Hannover GmbH, Langenhagen, Germany
Abstract
The current maintenance and overhaul of large civil jet engines is completely based on-condition and is widely customized to the individual requirements of the operation. Therefore, a very important factor for an effective and economic engine maintenance program is the investigation and appreciation of the current engine condition, as well as its individual deterioration mechanism. This paper is introducing a method to analyze the engine performance deterioration between two typical off-wing maintenance events (shop visits) so as to draw conclusions for maintenance planning and operation. In order to perform a precise evaluation the performance analysis is conducted on a modular level. Therefore the engine is divided into the following major modules: FAN, LPC, HPC, combustor, HPT, LPT and exhaust nozzle. The basis for the evaluation is the overhauled engine condition after a shop visit (pass-off test run) and the deteriorated engine condition after operation (incoming test run). These two points in the engine life cycle provide specific engine conditions that are to be analyzed by scientific and commercial software, and combined with a self-developed engine performance model in order to obtain the desired results: The individual engine deterioration during operation demonstrated by the differences of the modular performance between incoming test run and the last pass-off test run. In addition, to ensure the continuous monitoring of the performance status between the two test runs, it is important to analyze the “on-wing operation”. This is done using MTU’s Engine Trend Monitoring (ETM) system, which generates performance data based on the available in-flight data. In this paper an analysis example is used to present the analytic method and the obtained results. Reasons of deterioration are evaluated separately in reference to different environmental influences from specific geographical regions. In summary this paper introduces a solution to track the total engine performance based on modular evaluation values, starting at improvements for pass-off and incoming test runs as well as performance degradation during the on-wing time.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献