Influences of Inlet Swirl Distributions on an Inter-Turbine Duct: Part I—Casing Swirl Variation

Author:

Hu Shuzhen1,Zhang Yanfeng1,Zhang Xue Feng1,Vlasic Edward2

Affiliation:

1. National Research Council Canada, Ottawa, ON, Canada

2. Pratt & Whitney Canada, Longueuil, QC, Canada

Abstract

The inter-turbine transition duct (ITD) of a gas turbine engine has significant potential for engine weight reduction and/or aerodynamic performance improvement. This potential arises because very little is understood of the flow behavior in the duct in relation to the hub and casing shapes and the flow entering the duct (e.g., swirl angle, turbulence intensity, periodic unsteadiness and blade tip vortices from upstream HP turbine blade rows). In this study, the flow development in an ITD with different inlet swirl distributions was investigated experimentally and numerically. The current paper, which is the first part of a two-part paper, presents the investigations of the influences of the casing swirl variations on the flow physics in the ITD. The results show a fair agreement between the predicted and experimental data. The radial pressure gradient at the first bend of ITD drives the low momentum hub boundary layer and wake flow radially, which results in a pair of hub counter-rotating vortices. Furthermore, the radially moving low momentum wake flow feeds into the casing region and causes 3D casing boundary layer. At the second bend, the reversed radial pressure gradient together with the 3D casing boundary layer generates a pair of casing counter-rotating vortices. Due to the local adverse pressure gradient, 3D boundary layer separation occurs on both the casing and hub at the second bend and the exit of the ITD, respectively. The casing 3D separation enhances the 3D features of the casing boundary layer as well as the existing casing counter-rotating vortices. With increasing casing swirl angle, the casing 3D boundary layer separation is delayed and the casing counter-rotating vortices are weakened. On the other hand, although the hub swirls are kept constant, the hub counter-rotating vortices get stronger with the increasing inlet swirl gradient. The total pressure coefficients within the ITD are significantly redistributed by the casing and hub counter-rotating vortices.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3